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A fluid-mechanical approach for the cleavage of biological cells is presented. The 
equations of motion were combined with concentration and orientation distribution 
balances, for active contractile filaments on the cell surface, to provide a dynamic 
evolution of interfacial forces and deformation. The resulting flow and the 
simultaneously developing surface-tension anisotropy provided a mechanism that 
facilitates the generation of a contractile ring a t  the cell equator : a major organelle 
in the establishment of cell furrow and the ultimate cleavage. The moving-boundary 
problem was solved numerically using boundary-integral representation for the 
Stokes equations which was modified to incorporate the anisotropic interfacial 
tensions. 

1. Introduction 
Cell deformation occurs in many biological systems and is caused either by the 

influence of the surrounding medium (e.g. blood flow) or by the cell's own activity 
(e.g. cell division). Modelling of such events usually uses a representation of the 
biological cells as viscous droplets (Greenspan 1977cc, b ; Gallez 1984) or microcapsules 
(Barthes-Biesel 1980), i.e. a viscous droplet surrounded by a thin membrane. These 
hydrodynamical descriptions of a cell differ mainly in the characteristics of the 
surface forces which may induce or oppose deformations. 

A purely viscous-droplet description of a biological cell implies that the cell surface 
forces are modelled by surface tension typical of fluid-fluid interfaces. There, 
important processes known as capillary phenomena (Levich & Krylov 1969) may 
appear either when the interface shows a given curvature or when surface-tension 
gradients exist. The former effect gives rise to forces normal to the interface which 
are directly proportional to the magnitudes of the surface tension and the surface 
curvature. By opposing shape deformations, they have a stabilizing effect on the 
system. Gradients of surface tension, on the other hand, generate forces tangent to 
the interface. They derive from the surface-tension dependence on temperature or 
concentration of surface-active substances, which evidently alter the energy of the 
system. The effect of these tangential forces can be highly destabilizing. 

I n  the case of the cell a surface-active substance corresponds to  different 
biochemical species that are present a t  the cell surface and may thus alter its 
properties and behaviour by their chemical activity. Concentration gradients of such 
components may be controlled by mass transport from the inner or outer fluid as 
well as by reactions taking place at  the interface. 

Since the composition of the cell surface and its rheological properties are 
significantly different from the inner cytoplasm and the surrounding viscous 
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medium, it proves useful to represent a cell as an encapsulated viscous droplet 
whenever the surface remains homogeneous and does not exhibit active forces. 
Barthes-Biesel (1980) and Barthes-Biesel & Sgaier (1985), for example, simulated the 
behaviour of a spherical red blood cell in a shear flow using this approach. The 
rheological properties of the membrane were assumed to be linear elastic or linear 
viscoelastic. 

An interesting example of cell deformation due to active surface forces is provided 
by cytokinesis, i.e. the late stage of cell division in which a cell divides physically into 
two ncw daughter cells. In  this phenomenon the active organelle responsible for the 
cell cleavage is a thin layer just beneath the cell membrane, known as cortex, which 
is composed of a network of muscle-like contractile filaments. These filaments are 
observed to be oriented parallel to the cleavage plane under the leading furrow edge, 
forming an organelle known as the contractile ring which exerts the main driving 
force in the process (see reviews by Conrad & Rappaport 1981 ; Schroeder 1981 a) .  
The search for a better understanding of this phenomenon has led to the development 
of various theoretical models which were aimed a t  giving an explanation of the 
experimental data available and corroborating suggested mechanisms of cleavage. 
These models may be classified into two groups according to the hydrodynamical 
approach used to describe the surface forces. 

One group consists of a solid-mechanics approach as exemplified by the works of 
Pujara & Lardner (1979) and Akkas (1980, 1981) and include forces of the membrane 
type. These authors modelled cytokinesis by studying the deformation of an initially 
spherical two-dimensional membrane that envclops a volume of fluid and which is 
subject to an equatorial constriction force. The membrane representing the overall 
surface layer was assumed to have isotropic nonlinear elastic or viscoelastic 
properties, while the effect of the viscous dissipation in the inner and outer regions 
was neglected. Membrane deformed shapes obtained agree satisfactorily with the cell 
deformations observed by Hiramoto ( 1968) regardless of the particular rheological 
model assumed. The model provides no insight into the dynamics of the process and 
the mechanism for the formation of the contractile ring. 

Pure hydrodynamical models of cytokinesis were inspired by early experiments 
conducted by Butschli (1876) and Spek (1918) and their methodical reproduction by 
Greenspan (1978). These experiments show that a neutrally buoyant oil drop could 
undergo shape changes that closely resemble macroscopically the cell deformations 
during the cleavage process, when the drop surface tension a t  the poles is 
symmetrically lowered by means of an active surface substance. Based on these 
observations, Greenspan (1  977 a )  suggested that hydrodynamical effects could play 
an important role in the cytokinetic process and give some insights into the 
mechanism that leads to the formation of a cleaving furrow and a contractile 
filamentous ring underneath. Greenspan (1977a, b)  modelled the cell as a fluid 
droplet and the surface forces by an effective isotropic tension positively dependent 
on the concentration of contractile elements. Thus, if the droplet surface tension is 
lowered a t  the poles, owing to the effect of some stimulatory activity, a tension 
gradient produces a surface flow directed from the poles to the equator which causes 
an agglomeration of elements a t  the drop equator, further increasing the tension 
there and the overall surface-tension gradient. Greenspan postulated that this 
unstable process, once started, will continue indefinitely, providing the mechanism 
for cell cleavage. Moreover, it  was suggested that in their motion toward the equator 
the contractile filaments rotate and reorient themselves parallel to the cleavage plane 
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owing to surface contraction. His asymptotic analysis describes the initial stages of 
shape deformation but is limited to small perturbations. A numerical calculation 
(Sapir & Nir 1985) for large deformations indicates that Greenspan’s model, although 
providing a mechanism for the contractile ring formation, does not lead to complete 
cleavage owing to the isotropic nature of the surface tension (Sapir & Nir 1985; 
White & Borisy 1983). 

Recently, a model emphasizing the importance of the anisotropic character of the 
cell surface, an idea originally suggested by White & Borisy (1983), successfully 
demonstrated the deformation and division of spherical cells (Zinemanas & Nir 
1987). These results confirm that a better representation of the interfacial layer 
should be made to replace the effective surface tension or ‘membrane’ used in 
previous models. 

In  this communication we present a fluid-mechanical evaluation of the cytokinetic 
surface deformation ultimately leading to cell cleavage. The model combines the 
macroscopic equations of motion with microscopic local balances for filament 
concentration and orientation distribution function which are required to follow the 
local properties of the surface layer. The latter balances also involve a biochemical 
scheme representing the effects of surface stimulation and filament activity. Surface 
forces are evaluated as ensemble combinations of the individual contributions of the 
contractile elements. I n  $2 we outline the mathematical formulation for the moving- 
boundary problem. The slow viscous flow equations are combined with the material 
balances and the formulation of the interfacial forces into the form of a boundary- 
integral equation representation. This application to a problem with anisotropic 
interfacial forces is new. Simplifying assumptions are introduced in $ 3  to reduce the 
cumbersome equations to a form that is less complicated yet preserves the essentials 
of the full problem. The numerical scheme used is presented in $4 and the results are 
described in $5 where relevance to experimental observation is also discussed. 

2. Biomechanical model 
2.1. Formulation of the flow problem 

Consider a droplet B of viscosity hp, surrounded by a two-dimensional layer aB, 
freely suspended in an ambient infinite fluid B* of viscosity p. Both fluids are 
regarded as incompressible and Newtonian. This is a simplifying but rather well- 
justified assumption since, although it is known that the cyt,oplasm exhibits 
viscoelastic rheological properties (Hiramoto 1968), their role in the relatively slow 
process of cytokinesis is of secondary importance. Support for this conclusion is 
provided by the observations that substitution of a considerable part of the 
cytoplasm by oil or physiological solutions did not show any phenomenological or 
marked dynamic changes in cell cleavage (Hiramoto 1956). The Reynolds number of 
the flow is given by pUa/p where U is a representative velocity of the system, a the 
characteristic droplet dimension and p is the density of the fluid. When the driving 
force responsible for the motion and droplet deformation are the interfacial tensions 
of characteristic value, yo, and gradient, Ivy[, the velocity U corresponds to the 
normal and tangential interfacial motions which are of order y, /p( l+h)  and 
alVyl,/p( 1 + A ) ,  respectively. Estimates of the Reynolds number based on cell typical 
values indicate that it is generally much less than unity except when local surface 
gradients are extremely high. 

8 FLM I93 
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In  the absence of inertial and gravity effects, the velocity v ,  the stress a, and the 
pressure P fields in B and B" obey the linear quasi steady equations of motion 

V - a  = 0,  (2.1) 

v - v  = 0, ( 2 . 2 )  

where a = -PP/+Ap(Vv+Vv+) (2.3) 

v + 0  asIxI+co, (2.4) 

with p replacing Ap in B". 
The complementary boundary conditions to be satisfied are 

Here, A denotes a difference across the surface (outer minus inner), f is the interfacial 
force exerted on the fluids and n is a unit vector nornial to aB, pointing into B*. The 
specific expression for the interfacial forces is derived in the next section. 

Finally, if the interface aB, is described in terms of the radius vector R(x, t ) ,  its 
kinematics is given by the condition 

- = V ,  X E ~ B ,  
dR 
at (2.7) 

where d/dt denotes a material derivative. 

2.2 .  Interfacial forces 

In  view of the structure and composition of the interfacial layer it is necessary, when 
deriving an appropriate expression for the forces there, to assume a structural 
approach in which the individual contributions of the components forming this layer 
are taken into account. It will be assumed that the interfacial layer is composed of 
rod-like particles which are able to exert a contractile force along their axis and are 
confined to a continuous matrix, as. This implies that  the overall force f is a 
combination of an active contribution from the particle network and the passive 
reactions of the matrix. The former is dependent on the local particle concentration 
c and their orientation distribution function N .  The latter, however, depends on the 
surface strain and rate of deformation, via the rheological properties of the surface 
matrix. Following Aris (1962), with surface coordinates u, (a = 1, 2 ) ,  the general 
expression for the force f is given by 

f = yaflla R,, + b,, yapnn. (2.8) 

where yap is the surface contravariant stress tension, R,,  and n are the covariant base 
vectors and b,, is the second fundamental form of the surface. A comma indicates 
common differentiation and the bar denotes covariant differentiation which, in terms 
of the Christoffel symbols I-:,, is defined by 

y~l, = yap,, + r;8 7 1 8  + rg8 

Y", = Y g )  (c, N )  + Y g )  (cap d,,) 

(2.9) 

Likewise, as we have concluded before, the tension yap is separated in this case into 
the active and passive parts 

(2.10) 

where e,, and d,, are the covariant strain and rate of strain tensions, the indices (p) 
and (m) denote the particle network and the matrix respectively, and the dot 
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indicates a time differentiation. In  this expression knowledge of the local and 
instantaneous concentration and orientation distribution of filaments is required. 
Since the particles are confined to aB the dynamic evolution of these variables obeys 
surface mass and orientation conservation balances. These balances can be easily 
obtained by means of the surface Reynolds transport theorem (Aris 1962; Waxman 
1984). The mass balance is of the form 

ac 
at 
-++'%I, = -~c[w~a"flb,~+w~l,]+ DTa"P~IaP+R, (2.11) 

where wa and w 3  are the contravariant components of the tangential and normal 
surface velocities, D, is the translational diffusion coefficient, R is the rate of filament 
production by chemical reaction and aaP is the contravariant surface metric tensor. 
In  contrast to the three-dimensional mass balance, (2.11) has an additional term 
which takes into account the surface deformations. 

In  deriving the orientation balance it was assumed that filaments are rigid slender 
bodies. This balance may be influenced by translational and rotational surface 
motion, translational and rotational diffusion and by reaction effects. In  terms of the 
orientation distribution function, N ( x ,  p, t ) ,  the following expression is obtained : 

-+w"NI, i3N = DRV~p)N+V,p,- (WN)+-(@--N)+-(C~"NI,). R UT 
at c c 

(2.12) 

Here, D, is the rotational diffusion coefficient, p is the unit vector along the particle 
axis, I? denotes the orientation distribution function of filaments produced at rate R ,  
w is the particle angular velocity and V(p) denotes an operator with respect to the 
filament direction. This two-dimensional equation is an extended version of Burgers 
equation (Leal & Hinch 1971) including additional convective, reactive and 
translational diffusion effects. Note that the general three-dimensional counterpart 
of (2.12) has the same form except that  there a takes the values 1 ,  2 and 3 a n d p  and 
x are not confined or limited solely to aB. 

The first term on the right-hand side accounts for the rotational diffusion of the 
particles while the second represents the effect of their rotational motion. The effect 
of the production of filaments and translational diffusion is manifested in the last two 
terms. Evidently these will not contribute to the orientation balance either when the 
particles are produced with the same orientation distribution @ = N or when the 
gradients of c and N are perpendicular. 

Since the particles are considered short compared with the droplet dimension and 
may be assumed smaller than the typical scale of surface velocity gradient 
variations, the local velocity field on aB in the vicinity of a particle may be 
considered linear. The appropriate expression for the angular velocity of a particle, 

w = eyapYj4"(walg- w3) n + w ( p )  (2.13) 

where eaB is the permutation tensor and w ( p )  is an additional angular velocity 
appearing from possible interactions between adjacent particles, suggested by 
Schroeder (1975). 

The contravariant components of the interfacial velocity in (2.1 p ( 2 . 1 3 )  are 
obtained by the following expressions : 

w(p) ,  is 

2)" = a"P[(/-nn).u].R,p (2.14) 

w 3  = [nn.u]-n (2.15) 
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Generally, it may be more convenient to express the tensorial equations in terms of 
the physical components of the tensors (index in brackets) instead of the covariant 
and contravariant components. This is attained, for example, for the interfacial 
velocity or stresses, through the definitions 

(2.16) 

Finally, the functional relationship between the surface stress tensor and the 
concentration and orientation distribution is required. Assuming that the forces the 
particles exert are conservative, a general expression for a filamentous network 
contribution to the tensile stresses is (Lanir 1983) 

(2.17) 

where W ( p )  is the filament strain-energy function. It is interesting to note that 
although this filament's contribution to the surface stresses may depend on surface 
deformations through filament length variation, it has the form of a surface tension 
with anisotropic properties : the particles behave as a surface-active substance with 
a positive tension-concentration dependence and can make the cortex behave 
similarly to a fluid interface. In  our case surface motion will be induced by 
concentration gradients as well as orientation variations. As mentioned before, the 
passive matrix contribution, y& to the surface stresses depends on eaB and iap and 
is functionally determined by the cortex rheological properties. The latter can follow 
linear or nonlinear constitutive equation for interfacial layers (Evans & Skalak 1979 ; 
Waxman 1981, 1984; Adin Mann 1984). 

The relative importance of diffusion effects in (2.1 1) and (2.13) is anticipated to be 
negligible since diffusion coefficients of macromolecules on cellular surfaces are 
extremely small (Edidin 1977). In  the simplified problem presented in $ 3  we shall 
therefore neglect these effects compared to the convective terms in the two respective 
equations. 

2.3.  Integral boundary equation 

In  summary, (2.1)-(2.17) provide the formulation for the problem of the deformation 
of a viscous drop under the effect of surface tractions of the kind discussed in $ 2 . 2 .  
Although, in this case, the equations of motion are quasi-steady and linear. the entire 
problem exhibits an unsteady and highly nonlinear behaviour due to the strong 
coupling appearing in the boundary conditions between the mass and orientation 
balances and the equations of motion. Furthermore. the drop shape, a t  which the 
boundary condition must be satisfied, is not known a priori but  follows dynamic 
changes which are described by the kinematic condition (2.7). 

The equations of motion (2.1), (2.2) may also be expressed in an alternative 
integral form. This integral expression is, in fact, a representation of the solution to 
the Stokes equations which was derived by Ladyzhenskaya (1969) and is expressed 
in terms of the hydrodynamical single and double layer potentials. The derivation is 
based on the fundamental solutions of the Stokes equations and exploits their 
linearity. The main advantages of this boundary-integral representation reside in the 
incorporation of the equations of motion and the boundary conditions into a single 
integral expression which is expressed in terms of the surface velocity and stress 
distributions only. This is of major importance since the principal task of this work 
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is to study the behaviour and deformation of the interfacial layer and, in particular. 
the dynamics of the surface tensions, 

Rallison & Acrivos (1978) used the integral-equation approach to study the 
deformation of a viscous drop in an extensional flow field. Using the jump condition 
of the double layer potential Rallison & Acrivos derived a boundary-integral 
equation for the interfacial velocity. Their analysis applies to a constant surface 
tension and an arbitrary viscosity ratio, thus extending the previous expressions 
obtained by Youngren & Acrivos (1975, 1976) for the particular cases of h + 00 and 
h = 0. A similar approach was used by Hiram & Nir (1983) to study the coalescence 
of two spherical polymer drops due to surface-tension forces, and by X. Z. Li, 
D. Barthes-Biesel & A. Helmy (1986. private communication) to determine the 
behaviour of a microcapsule in a shear flow. Likewise, the boundary-integral 
approach was found useful in evaluating the motion of a spherical particle normal to 
a deformable interface (Lee & Leal 1982; Geller, Lee & Leal 1986), and in the study 
of shear flows over two-dimensional ridges and cavities (Higdon 1985). Following 
Ladyzhenskaya (1969) and Rallison & Acrivos (1978), Sapir & Nir (1985) derived a 
similar expression for the interfacial velocity which also included a term involving 
the effects of surface-tension gradients on the surface forces. 

The general integral equation for the interfacial velocity is of the form 

where the kernels for the single and double layer potentials are, respectively, 

5 = 151. 1 55 3 55c J(5) = -+-, K(5) = --, 5 = x - y ,  5 g3 4n 55 
(2.19) 

Here um(x)  denotes the imposed flow a t  1x1 + 00 which must satisfy the creeping-flow 
equations. In our case urn = 0. The most general form of the interfacial forces f is 
described by (2.8) and is related to the inner and outer fluid stresses by the condition 
(2.6). 

Equation (2.18) is significantly simplified when h = 1 ,  attaining the explicit 
form 

(2.20) 

Rallison & Acrivos (1978) noted that (2.20) is not limited to x in 823 but is valid 
everywhere. This follows from the fact that when the same equation describes the 
motion of the inner and outer fluids, the velocity field is determined, owing to the 
linearity of the Stokes equations, by the imposed flow and the distribution of 
Stokelets which, in this case, corresponds to the interfacial forcesf. This argument 
is verified in (2.20) by noting that J(c) is the fundamental solution of the Stokes 
equation that denotes the velocity field a t  a point x due to a unit force exerted a t  y .  

Similarly, the integral expression for the pressure is given by (Ladyshenskaya 
1969) 

(2.21) 
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(2.22) 

For x in B*, hp and n are replaced by p and -n ,  respectively. 
The first integral is a single layer potential with density n which has a 

discontinuity of the first kind as x approaches aB (Ladyshenskaya 1969), with a 
jump equal to trace (IS). For an incompressible fluid this jump becomes if'. Thus, 
noting that the second integral is continuous across dR, the values of the inner and 
outer pressures as x approaches aI3 from R and R* are respectively 

!$'(x') = P" (x)+ L(<).=(u(y)).n(y)dS,+pS M(<):u(y)n(y)dS,, X E B * .  
?B (2.24) 

Adding these expressions, a mean pressure may be defined a t  the interface 

(2.26) 

We shall make use of (2.20) and (2.26) in the evaluation of bulk properties as 
streamlines and pressures. As with (2.20), expression (2.26) is also valid for x in B and 
B* since the pressure is determined by the imposed flow and the distribution of 
interfacial forces through the fundamental solution to the pressure field, L.  

The continuity equation (2.2) may also be expressed in an integral form by 
applying the divergence theorem, 

l -Bu-ndS = 0. (2.27) 

This expression is used later to control the accuracy of the numerical evaluations and 
ensure that the solution indeed satisfies the incornprcssibility condition, i.e. the total 
volume of the drop remains constant. 

3. A simplified model 
3.1. Assumptions 

In order to make the above system of equations solvable and at the same time 
maintain the basic phenomenological characteristics of the cytokinetic process, a 
number of simplifying assumptions are made. A discussion of these based on 
biophysical and biochemical considerations is given in 5 3.2. 

( a )  The ratio of viscosities, A,  is taken to be 1. 
( b )  Terms involving translational and rotational diffusion in (2.11) and (2.12) are 

neglected. 
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(c) Population distribution functions of passive and active filaments are equal and 
initially random. 

( d )  The rate of production of active particles a t  the surface is controlled, via a 
simple biochemical kinetic scheme, by a stimulating agent which diffuses to the 
surface from two source points located at the droplet axis. A plot of the stimulus flux 
a t  the initial spherical surface is shown in figure 1 .  

( e )  Filaments exert a contractile force which is independent of their length but 
depends on time. 

( f )  Passive contributions to the surface stress, i.e. y:&, are neglected. 
( 9 )  The interaction between adjacent filaments results in an additional rotation 

contributing to particle orientation. 

3.2. Discussion of the simplified model 

The assumptions in $3.1 are based on the following biophysical and biochemical 
considerations. 

(a)  The assumption that the ratio of viscosities A, is 1 may not exactly reflect the 
biological situations, yet i t  greatly simplifies the integral boundary equation for the 
interfacial velocity but, on the other hand, does not have a significant qualitative 
influence on the drop surface dynamics (Hiram & Nir 1983). The deformation 
timescales, however, may differ. 

( b )  The equations of mass and orientation balances may be reduced since it is 
found that the coefficients for macromolecular translational and rotational diffusion 
on cell surfaces are extremely small (Edidin 1977). This argument is supported by the 
fact that the estimated length of the contractile filaments is 0.5 pm, close to the limit 
where Brownian motion effects become negligible. Mathematically, the typical 
PBclet number, defined by the characteristic values of the surface velocity, the 
filament length and the appropriate diffusion coefficient, is found to be high in all 
cytokinetic processes. 

(c) Considering the hypothesis that active filaments are produced from passive 
filaments, by a biochemical reaction, and that both populations are initially 
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randomly oriented, it is expected that their orientation distribution functions are 
equal. This implies that  the reactive terms in (2.12) can also be negligible. 

In  view of ( a ) ,  (b)  and (c), the equations of motion (2.1) and (2.2) can be described 
in the reduced integral form by (2.20) and (2.26), while the mass and orientation 
balances become 

and 

dc 
dt 
- = - c[v3aa4)ap + Val,] + R 

CLY 
dt 
- = v(p) - ( W N )  

The initial conditions for (3.1) and (3.2) are that filaments are uniformly 
distributed and randomly oriented in the cortical sublayer. This conforms with the 
evidence that the cell cortex does not exhibit any region particularly predisposed to 
form a contractile ring (Rappaport, & Ebstein 1965) and that the interfacial tension 
is initially homogeneous and isotropic (Hiramoto 1968). 

(d )  The biochemical process from which the rate of production of filaments is 
estimated was assumed to follow the simple first-order kinetic scheme 

F+E ~ F E ~ A  

S + E  2 SE % B  
(3.3) 

here, F and FE denote the passive and active forms of the contractile filaments, S is 
a stimulatory biochemical agent sent by the mitotic apparatus to the cortex, and E 
is an activating agent. SE represents an inhibited form of E, and A and B constitute 
inactive byproducts of the above sequential process. The species F, E and FE are 
confined to the cortical layer. 

I n  the absence of a complete known biochemical process, this scheme accounts for 
the major observed and expected phenomenological behaviours. These include, as 
the first reaction shows, a mechanism of filament activation that does not depend on 
the presence of a mitotic apparatus. This kind of activity was found in enucleated 
cells and is manifested by periodic variations in surface tension (Schroeder 1981 b).  
The second characteristic included is a relaxation of the surface tension owing to the 
inhibition of the activity agent E by a stimulating agent. This is in agreement with 
the polar relaxation theory of cleavage which postulates that the stimulus produces 
a relaxation of the cortical tensions due to inhibition or decomposition of contractile 
filaments. 

The biochemical stimulus is assumed to diffuse toward the surface from two point 
sources located a t  the asters of the mitotic apparatus in a finite time period during 
which the diffusion process is regarded stationary. The stimulatory agent S is 
considered to react relatively fast as it reaches the cortex. I n  this case the equation 
controlling the distribution of the stimulus is given by the Laplace equation 

V2S = 0,  X E B ,  

and is subject to the boundary conditions 

(3.4) 

S=O,  xEdB (3 .5)  

and a source of unit strength, located a t  each aster. 
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The solution to (3.4) for the flux on a spherical surface of radius unity and a 
distance of 2b between the astral sources, is given by 

m l - b  cos8 l + b  cos8 
3 +  C mA,P, ( c o s ~ ) ,  (3.6) - - as -_ 

8% [1+b2-2b cos8]n [1+b2+2b C O S ~ ] ~  

where 8 is a meridional angle and P, are Legendre polynomials with associated 
coefficients A,. The total amount of the stimulus that reacts on the cortex then is 
calculated from the flux (3.6) and the time interval during which the sources are 
active. In  figure 1 it can be seen that the highest level of influence is attained at  the 
polar regions and therefore produces the strongest cortical tension relaxation there. 
In  the numerical calculation the initial concentration of F, E and FE were chosen 
as 1,  2 and 0.5 respectively and the kinetic constants were selected to  be k, = 1,  
k, = 0.1, k3+ CO, k, = 0. 

( e )  Since the biochemistry behind muscle contractions is highly complex, involving 
a high number of steps and biochemical species (Goody &, Holmes 1983), it  is also 
assumed that each filament exerts the same contractile force K along its symmetry 
axis. I n  search of simplification it is considered that this force does not depend on the 
filament length, dl. Possible time variations in the filament forces are, however, 
permitted. To qualitatively retain the contraction-relaxation characteristics of 
isometric sarcomere tension dynamics of muscle activity, the filament force K was 
varied according to first-order kinetics, 

dK = ( L C 2 ) K .  
dt 1 + c , t  (3.7) 

c, and c, are arbitrary constants chosen merely to follow the process timescale. 
( f )  The passive contribution to the surface stress y?A, arising from the cortical 

resistance to surface deformations is neglected here in the first approximation since 
most emphasis is given to the study of the behaviour and stresses of the filaments 
network. Inclusion of these forces does not enhance greatly the complexity of the 
equations and their solutions, while requiring the addition of several extra 
parameters into the model. 

( 9 )  The interaction between adjacent filaments, suggested by Schroeder (1975) 
induces an additional rotational motion which contributes to the filaments 
orientation. This effect is expressed in the second term on the right-hand side of 
(2.13). Since the mechanism of filament interaction is not known, a simple moment 
is assumed to exist between two filaments, allowing an analytical solution to the 
orientation balance (2.12). 

The net moment T ( a ,  a’) between a pair of particles a t  orientations a and a’ results 
from attractive and retarding forces which originate from particle chemical 
composition, viscous resistance and steric hindrance, all not completely understood. 
This moment and the additional rotation it induces are expected to vanish when 
particles are either perpendicular or parallel in close proximity. For simplicity we 
assume that this characteristic has the explicit relation 

T(a,  a’) K sin2(a-a’). (3.8) 

Superimposing the individual pair interactions of the particle a t  angle a with all 
particles a t  angles a’ a t  a given position yields the additional rotation 

w ( a )  = PN(a’) T ( a ,  a‘) da’. 1: (3.9) 
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Since the concentration of particles enhances the attractive components of the 
moment but also increases the viscous and steric retardation, the proportionality 
coefficient /3 is taken to be independent of c. 

Evaluation of N from (3.2) following (3.9) will require cumbersome numerical 
iterations due to the nonlinear dependence. We therefore bring all interactions to the 
single orientation a’ = 01” with an intensity and direction dependent on the integrated 
tensions a t  each meridional location which is a macroscopic expression of the level of’ 
order there. a, is the orientation a t  which N attains its maximum. 

Hence, we write 

w(01) = ~ ~ / 3 l ~ t q - ’ ( ~ ) - l  ld(a’-a,,) sin2(a-aa’)da’ (3.10) 

This permits a simple integration of (3.2) when a” = 0 or $r. 

3.3. Axisymmetrical cleavage 

Although special cases of unilateral cleavages are encountered in nature or 
cleavages of experimentally altered cells have been obtained, the most common type 
of division is axisymmetrical, showing fore-and-aft symmetry. Thus, it is convenient 
to use a cylindrical coordinate system ( r ,  $, z )  to describe the three-dimensional 
motions and a set of surface coordinates ($, z )  to follow the dynamics of the surface 
variables. These surface coordinates represent an orthogonal set which coincides with 
the principal axis of surface stresses, deformation, etc. The cell shape is defined by 
the even function r = R(z) for - 1  < z < 1. 

The equations are non-dimensionalized using the scales y,,, u and y0/p  for the 
surface tension, the distances and the velocities, respectively. Similarly, the pressure 
is normalized by y,,/a* yo denotes a characteristic isotropic surface tension which, in 
view of (2.17), is proportional to the initial filaments concentration C,. The latter was 
arbitrarily non-dimensionalized to be 4. 

Considering the axial symmetry of the motion, (2.20) can be integrated in the 
circumferential direction giving the simplified expression 

(3.11) 

where z and y are coordinates measured along the z-axis and A,,, A,,, A,,, A,, are 
kernel functions, related to the tensor J derived by Youngren & Acrivos (1975) in 
terms of complete elliptic integrals (see Appendix A). f T ,  f ,  denote the cylindrical 
components of the interfacial forces which, when expressed in terms of the normal 
and tangential force components f n  and fs, are 

Here, t denotes a unit vector tangent to aB with components given by 

(3.12) 

(3.13) 
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while it follows from (2.8) that f n  and f, are related to the surface stress tensor, with 
principal values yzz and y,,, in the following manner : 

where the principal radii of curvature R,, R, are given by 

1 - - R”h.4) - 1 - _ -  1 

R, [l +R’Z(y)]i’ R, R(y) [l +R’2(y)]t’ 

(3.14) 

(3.15) 

(3.16) 

The expression for the pressure (2 .26)  in this axisymmetrical case, with P “ ( x )  = 0, 
is 

(3.17) 

where P,, P,, the kernel functions related to the vector L, are given in Appendix B. 
In view of the simplifying assumptions the corresponding mass balance (2.11) 

takes the form 
1 + R ,  (3.18) 

where v, and v, denote the normal and meridional-tangential velocity components. 
Using (2.14)-(2.16), or by simple geometry evaluations, these components are found 
to be related to the cylindrical velocity components through expressions similar to 
(3.12). 

Similarly, designating the angle formed between the filament direction and a 
meridional line by a, the simplified version of the orientation balance (2.12) 
becomes 

c ~ a  - = - ( w ( a ) N ) ,  
dt aa 

(3.19) 

where, from (2.13), the angular motion reduces to 

As stated previously, the additional rotation w results from the interaction between 
adjacent filaments. 

Equation (3.19) subject to a randomly oriented initial filament distribution has a 
general solution of the form 

1 
N ( a ,  2, t )  = 

where w’ is the expression in the brackets on the right-hand side of (3.20). Here 52 
denotes a constant of proportionality obtained by substituting (3.10) in (3.20). 

Equation (3.21) provides the dynamic variations of the orientation distribution 
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function a t  any material point on the surface. In  this expression, the integrals must 
be calculated numerically since the integrands are themselves dependent on the 
orientation distribution time history. 

The dependence of surface stresses on the filament concentration and orientations 
is given in (2.17). Assuming, as stated previously, that  each filament exerts a force 
K independent of its length, and that this length may be considered constant, the 
expression for the principal stresses of the filamentous network contribution is, in 
non-dimensionalized form, 

[ YS# 
= C(Z, t )  IriV(01. X ,  t )  [cOsO1] dol, 

sin 01 
(3.22) 

where the non-dimensional parameter KdlC,/y, is set to 1.  

4. Numerical scheme 
The nonlinearity and the coupling of the equations require the use of a numerical 

method for the solution of the above simplified problem. The quasi-steady nature of 
the equations of motion allows a simpler calculation scheme since the surface velocity 
may be determined from the known instantaneous shape and interfacial forces. This 
velocity may be employed in the mass and orientation balances and in the kinematic 
condition to evaluate, by means of an up-dated Lagrangian procedure, new 
concentration, orientation and tension profiles as well as a new shape. These are 
revised in a new calculation of surface velocities under the new conditions and thus 
the calculation scheme may be continued for as long as required. 

The spatial derivatives and the velocity resulting from the integral (2.20) were 
evaluated using a finite-difference scheme. The contour of the axisymmetric surface 
was divided into M intervals by distributing M +  1 points along a meridian line. 
Initially, these intervals were selected equal ; however, any other arbitrary choice 
could have been used to anticipate crowding or separation of the material points under 
the effects of the surface motions and deformations. Since separation distances 
change as the points move, a finite-difference scheme for unequal intervals was 
employed while second-order accuracy was maintained when evaluating first and 
second derivatives using three- and five-point algorithms. 

In evaluating surface velocities i t  is noted that as e = z- y approaches zero, the 
kernel functions A in (3.11) possess a logarithmic singularity, except a t  the poles 
where this singularity is of O(c&), and therefore the expression is integrable 
everywhere. Thus, to evaluate the velocity a t  a given point x,, the leading orders of 
the singular kernels, up to  O(e2) ,  were subtracted from the integrand in the interval 
between x , -~  and x,+~. The regular integration which resulted was calculated using 
a trapezoidal rule and added to the analytical integration of the asymptotic singular 
expansion between xnP1 and x,+~. Similar procedures were employed by Rallison & 
Acrivos (1978) and Hiram & Nir (1983). 

M = 70 was used as a compromise between numerical accuracy and limited 
computer resources. A comparison of the results obtained by this algorithm to the 
analytical solutions for the surface velocities on a spherical drop having a constant 
or variable surface tension (Cox 1969; Sapir 1984) shows a close agreement to within 
a few percent. 

Once the interfacial velocity was found, shape and orientation changes were 
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computed for each material point on the surface by means of a straightforward 
Newtonian integration which, for the shape variations, becomes 

R(t+dt) = R(t)+v(t)At. (4.1) 

Since there is no obvious criterion for the stability of this quasi-steady evolution 
of the shape, an arbitrarily time increment At was chosen having the general form 

MIN IAxl 
MAX IAvl’ 

At = C (4.2) 

where C is an 0(1) constant and x and v are the distance and velocity differences 
between any two adjacent points. This expression allows the sequential order of the 
points to be maintained and provides satisfactory numerical accuracy. The same 
increments were used in integration of the mass and orientation balances. For the 
mass balance, for example, the total cumulative errors were ever higher than 10% 
with the higher errors appearing during the very last stages of cleavage where 
extreme surface curvatures prevail. 

The condition of incompressibility was maintained by correcting the normal 
velocity a t  each time-step by a small constant value to keep the drop value constant. 
This procedure is enforced since only integral estimates rather than local values of 
the normal velocity can be evaluated from the continuity equation (2 .27 ) .  Typical 
corrections were O( lop3) of the average surface normal velocity. If not corrected, the 
total volume increment would not exceed a few percent of the initial volume. 

5. Results and discussion 
Using the above numerical scheme, the mathematical model of cell cleavage 

presented in $3  was solved to analyse the role played by hydrodynamic motions in 
cell division and, particularly, in the reorganization of the cortical layer and the forces 
arising there. 

As already stated, the initial biochemically uniform surface layer is altered by the 
flux of a stimulus from the mitotic asters towards the surface. According to (3.6) the 
effect of the flux is assumed proportional to its value and to the period of time during 
which the sources are active. This non-dimensional time interval was arbitrarily 
taken equal to 0.6 so that stimulus, sufficient to induce complete cleavage, can reach 
the surface. When shorter time intervals were used, cleavages were not fully 
accomplished since surface differentiation due to the stimulating action is not 
sufficient to later create the required surface organization and tension variations that 
would result in complete divisions. This is in agreement with the observation that 
when the mitotic apparatus is disrupted or eliminated a t  the earlier stages of mitosis, 
cleavage is inhibited or incompletely realized (Beams & Evans 1940 ; Hiramoto 
1956). 

The stimulating kinetic scheme results in a surface concentration profile of active 
contractile filaments that exhibits a concentration a t  the equator higher than at the 
poles. This developing concentration gradient, then, produces a surface-tension 
gradient which consequently induces a surface motion from the poles toward the 
equator. The surface flow thus created is responsible for the motion of filaments 
toward the equator as well as for part of the filament rotation as equations (3.18) and 
(3.19) indicate. A meridional tangential velocity profile typical of initial and 
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FIGURE 2. Tangential velocity profile at t = 2.  
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FIGURE 3. Furrow radius dynamics : a comparison between isotropic (1) and anisotropic ( 2 )  
tension cases with no filament interactions and muscle dynamics. 

intermediates times is shown in figure 2. This profile exhibits a region, around the 
equator, where the velocity gradient is negative, and two zones near the poles where 
this gradient is positive. Following (3.20), since the surface extensional flow field in 
which the filaments are confined decelerates near the equator, their rotational 
motion orients them there parallel to the cleavage plane. Note that since the initial 
orientation is random and that R, = R, and v, = aR/az = 0 a t  the equator, the 
unique contribution to the rotational motions there is initially provided by 
the velocity gradient. This initial rotation then triggers the interaction between the 
filaments as the random orientation is disrupted. As the filaments rotate a gradient 
in the orientation distribution function is created. I ts  influence on the surface-tension 
gradient, particularly the meridional component, may be in the opposite direction to 
the influence of the already existing concentration profile. 
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We first discuss the influence of the orientation of filaments due to the sole effect 
of surface motions, i.e. neglecting the interaction effects and assuming no variations 
in the filaments force. The results are presented in figure 3 in terms of the dynamic 
changes of the furrow radius R,, and are compared to the changes emerging in the 
isotropic-surface-tension case. In  both situations cleavage is incomplete and the 
furrow radius shows a maximum reduction of about 10 % of its initial value. Similar 
findings were reported for the isotropic-tension cases, by Greenspan (1977 a, b )  and 
by Sapir & Nir (1985) who could not achieve furrow reductions higher than 20% in 
spite of the various destabilizing surface force distribution they employed. Their 
conclusion was that isotropic surface tension could not lead to full cleavage owing to 
the high negative curvature that develops a t  the furrow leading edge. White & 
Borisy (1983) also failed to obtain complete cell cleavage whenever surface tensions 
were considered isotropic. They suggested the important role of anisotropic tensions 
in attaining complete divisions ; however, they did not present their model rigorously. 

The effect of the anisotropy in surface tension, due to the filaments reorientation, 
is seen in figure 3 to cause a further reduction of the furrow radius. This difference 
stems from the reorientation of the filaments in the equatorial region parallel to the 
cleavage plane which consequently increases the circumferential over the meridional 
tension. The resulting effect is a reduction of the influence of the meridional forces 
a t  the site of the developing negative radius of curvature R,. However, the 
destabilizing effect of reorientation is not sufficient to completely overcome the 
negative curvature inhibiting factor, when caused by surface motions only, and 
being about a complete division. It is observed that while the furrow velocity in the 
initial stages of furrowing is higher in the anisotropic-surface-tension case this 
situation is later reversed. This behaviour may be explained in terms of the 
characteristic motion and reorientation particular to each case. Since a t  the 
beginning the filaments are oriented randomly, both situations exhibit similar 
concentration profiles and therefore their hydrodynamic behaviour is alike. As 
surface motion is induced and reorientation begins, a higher driving force is attained 
in the anisotropic case owing to the previously discussed enhancement of 
circumferential tension while the concentrations profiles in both cases remain similar. 
Later, as reorientation continues to increase the circumferential tension a t  the 
equator, the meridional tension component and its gradient diminish. Consequently, 
the surface motion responsible for the agglomeration of filaments in the equator 
decreases. Such an effect does not occur in the isotropic-tension case and the higher 
concentration achieved there results in higher furrow velocities. Maximum deflection 
is however smaller. It may be concluded, then, that the effect of the gradient of 
orientation distribution on the surface tension in the anisotropic-tension case 
opposes the effect of the concentration gradients. 

When filaments interaction and muscle dynamics are included, division is achieved 
since, in this case, the degree of orientation a t  the furrow edge produces a 
differentiation between the circumferential and meridional equatorial tensions which 
is able to overcome the retarding effect of the negative principal curvature R,. The 
influence of muscle dynamics of the form (3.7) is manifested in the modulation of the 
furrow velocity as is shown in figure 4. Since the force first increases and then 
gradually diminishes, the velocity a t  early stages appears higher than that evaluated 
when only interactions are included, but a t  later stages becomes smaller. This 
behaviour is in qualitative agreement with the measurements of Hiramoto (1968) 
and probably indicates that the force modulation and biochemical reactions denote 
important active processes in cell cleavage. 
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FIGURE 4. Furrow radius dynamics : (1) with filament interaction ; (2) with filament interaction 
and muscle dynamics. 
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FIGURE 5. The evolution of orientation distribution functions a t  the equator: (1) t = 0,  (2) 2, 
(3) 2.5,  (4) 3, ( 5 )  3.5. 

The orientation distribution function related to the case in which interactions and 
muscle dynamics were included was evaluated in the equatorial region a t  several 
times and is presented in figure 5.  I n  this region the filaments become oriented 
parallel to the cleaving plane owing to the effect of the negative tangential velocity 
gradient av,/as there, and the interaction between filaments according to (3.20). It 
is observed that sharp circumferential order is obtained after a relatively short 
period. In addition, the corresponding surface concentration profiles show, as ex- 
pected, an enhanced agglomeration of contractile filaments a t  the equator (figure 6). 
This combination between aggregation of filaments and their circumferential 
orientation conforms to the experimental observation that a high concentration of 
oriented filaments appears under the furrow leading edge only after the induction of 
surface deformation, and develops simultaneously with cleavage progress (Schroeder 
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FIGURE 6. Filaments concentration profiles at  t = 0,  2, 3, 4, 5, respectively. 
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are defined in equation (3.21). 

1973,1987). It may then provide a mechanism for the contractile ring formation. The 
intensity of rotation which brings about the distinct orientation of the filaments at 
the equator is depicted in figure 7.  It is seen that the rotation coefficient increases to 
a maximum and then relaxes, the decrease a t  the least stages of deformation being 
due to the non-negligible effect of the negatively increasing curvature term in 
(3.20). 

The main factors contributing to the concentration changes are the surface 
velocity gradients and surface deformations as expressed in the terms on the right- 
hand side of (3.18). Although initially these two terms contribute to an enhancement 
of the concentration at the equator, a t  later stages, when the mean curvature 
becomes negative, the term that depends on the surface deformation opposes a 
further increase in concentration. This effect, however, does not become appreciable 
until the final stages of division and is not perceived in figure 5. It is visible in 
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FIGURE 8. Tension dynamics : ( 1  ) equatorial circumferential, (2) equatorial meridional, (3) polar. 
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FIGURE 9. Pressure dynamics at the centre 0, average estimate by Hiramoto (1968). 

figure 7 as mentioned above. The concentration profiles obtained closely resemble the 
experimental observations on the motion of inert particles on the cell surface during 
cytokinesis (Rappaport 1978; Koppel, Oliver & Berlin 1982) which show an 
agglomeration of these particles in the equatorial zone due to surface motions. 

A plot of the polar tension and the circumferential and meridional equatorial 
tensions is presented in figure 8. It is observed that initially all the tensions increase 
but lat,er diminish. This is due to the combined effect of contractile filament 
production by the biochemical reaction, muscle dynamics and surface motions. At 
the onset of the process the increase of tension comes mainly from the reaction and 
muscle dynamics effects, while deformations and surface motions are still small. The 
later decrease in the tension is then due to a decrease in the filaments force and the 
decomposition of active filaments. The effect of surface motion and deformation is 
more visible in the polar tensions since these rapidly cause a decrease in the polar 
concentration of active filaments which subsequently lowers the tension there. 
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FIGURE 10. Streamline pattern at t = 2. 
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FIGURE 1 1 .  Streamline pattern at t = 4.7. 

Although the general behaviour of these tension agrees with Hiramoto’s (1968) 
observations, his measured values for the polar tension are higher than those of 
the meridional equatorial component a t  all times. This discrepancy is a result of the 
neglected passive surface tension in (2.10). A more complete description of the 
rheology of the cortical layer is likely to show higher values for the polar tension since 
major strains occur in that region. This aspect is currently under study. Furthermore, 
deviations from experimental observation of tension development result also from 
the simplified form of biochemical scheme and muscle dynamics assumed here. Of 
course no cleavage will progress without these factors and a better knowledge of 
these processes still awaits further biochemical research. 

Hiramoto (1968) calculated the pressure within the cell from measurements of an 
external force applied at the polar region. His calculations are compared in figure 9 
to the average pressure evaluated by means of (3 .17) .  A qualitatively similar 
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FIGURE 12. Evolution of furrow radius R, (1) and polar distance I ( 2 )  during cytokinesis. 
Experimental data by Hiramoto (1968). 
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FIGURE 13. Consecutive surface shapes of the dividing cell. 

behaviour is observed while the time lag is apparently again due to the simplified 
biochemical and muscle dynamic schemes assumed and to  the arbitrary choice of 
viscosity ratio in the solution of (2.15). The corresponding streamlines of the 
cytoplasmic motion calculated a t  two different times are shown in figures 10 and 11,  
and exhibit remarkable resemblance to the cytoplasmic motions observed by 
Hiramoto (1978). Note that the dividing cell surface is not a streamline. Figure 12 
depicts the results of the dynamic deformation of the surface during cleavage. The 
shrinkage of the furrow radius is shown together with the variation in the polar 
distance and the corresponding experimental observations of Hiramoto ( 1968). 
While the dynamics of the furrow radius closely follow that of the experimental 
findings, the polar distances calculated are slightly higher than those observed. It is 
anticipated that when more realistic rheological properties for the cortex are 
incorporated in (2.10), and thereby in (2.15), the discrepancy in the predicted and 
measured geometrical dimensions will diminish. 
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I n  conclusion we emphasize that the realization of a simulation for the complex 
phenomenon of cell surface deformation to ultimate division is brought about by the 
employment of a fluid-mechanical analysis combined with biochemical schemes for 
the development of surface forces. The ultrastructural description of the cortex layer 
provided an integrated anisotropic surface tension which is otherwise not 
encountered in pure liquids. The boundary-integral representation for the flow 
equations facilitated a quasi-steady solution of the moving-boundary problem and a 
continuous calculation of the corresponding surface deformation. The resulting 
instantaneous cell shapes, a typical example of which is depicted in figure 13, closely 
resemble the reported experimental observations (Hiramoto 1968 ; Karasiewicz 
1981). 

This research was supported by the Fund for the Promotion of Research a t  the 
Technion. 

Appendix A. The explicit form of the components of A in (3.11) 

- [ ~ ( z - Y ) ~  + 3 ( ~ - - y ) ~  ( r2  +R2(y))  + ( r 2 - R 2 ( y ) ) 2 ]  

where 

F and E are the complete elliptical integrals of the first and second kind with 
modulus k .  

Appendix B. The expressions for the components of P in (3.17) 

{ [R2(y) - r2 - ( Y - z ) ~ ]  
k ( 1  + R"(y)); 

4x ~ l ( y )  r* 
p,=- 
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